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ABSTRACT

ON THE FUEL SPRAY APPLICATIONS OF
MULTI-PHASE EULERIAN CFD TECHNIQUES

SEPTEMBER 2019

GABRIEL L. JACOBSOHN

B.S, UNIVERSITY OF MASSACHUSETTS, AMHERST

M.S, UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor David P. Schmidt

Eulerian-Eulerian Computational Fluid Dynamics (CFD) techniques continue to

show promise for characterizing the internal flow and near-field spray for various

fuel injection systems. These regions are difficult to observe experimentally, and

simulations of such regions are limited by computational expense or reliance on em-

piricism using other methods. The physics governing spray atomization are first

introduced. Impinging jet sprays and Gasoline Direct Injection (GDI) are selected

as applications, and modern computational/experimental approaches to their study

are reviewed. Two in-house CFD solvers are described and subsequently applied in

several case studies. Accurate prediction of the liquid distribution in a like-doublet

impinging jet spray is demonstrated via validation against X-Ray data. Turbulence

modeling approaches are compared for GDI simulations with dynamic mesh motion,

with results validated against previously available experimental data. A new model

vi
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for turbulent mixing is discussed. Code performance is thoroughly tested, with new

mesh motion techniques suggested to improve scaling. Finally, a new workflow is

developed for incorporating X-Ray scanned geometries into moving-needle GDI sim-

ulations, with full-duration injection events successfully simulated for both sub-cooled

and flash-boiling conditions.
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CHAPTER 1

INTRODUCTION

The world’s demand for energy continues to increase, with global energy usage

rising by a total of 2.1% in 2017 alone [5]. Oil continues to serve as the primary source

of energy for this global demand, and is forecast to continue dominating through 2040

based on current economic and political forecasts [4]. These factors have combined to

create a forecasted 50% incease in global greenhouse gas emissions by 2050, increasing

the already serious concerns about climate change [3]. The transportation sector is

forecast to remain the largest end-use source of carbon dioxide emissions for the

forseeable future[6]. The aerospace industry in particular is still wholly reliant on

fossil fuels, as the energy densitites typical of modern batteries are still too low to

support air travel. The battery pack to match the heat content of the fuel in a typical

Airbus A320, for example, would exceed the aircraft’s maximum takeoff weight on

its own [54]. Electric vehicles, while largely improved in recent years, remain too

expensive for widespread adoption [103].

Given the transportation sector’s continued reliance on liquid fuels, research into

fuel injection technology is critical. Controlling the mixture distribution inside a com-

bustion chamber is key to achieving clean, efficient combustion, rendering thorough

understanding and control of the spray from a fuel injector critical. Hardware based

testing of fuel sprays is expensive and cumbersome, especially under combustion rel-

evant conditions. Simulations of fuel sprays using Computational Fluid Dynamics

(CFD) are a promising alternative, but require additional development. In particu-

lar, modeling the spray near the injector, as well as the flow inside the injector itself,

1
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remains challenging. The present work seeks to improve upon a promising solution

to these modeling challenges.

2
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CHAPTER 2

BACKGROUND

2.1 Spray Physics and Breakup Regimes

Literature on a quantitative understanding of liquid jet atomization physics may

be traced as far back as 1873, when Plateau noticed that jets became unstable and

broke into smaller ligaments when their lengths exceeded their diameters by a factor

of π [77]. He argued that under quasi-static conditions, surface tension would then

draw each ligament into a spherical droplet which has a smaller surface area than a

cylinder for a given fluid volume. Surface tension carries the dimensions of energy per

unit area, so a spherical droplet is therefore a lower energy state for the fluid than

a cylinder once past the instability point. Rayleigh expanded on this explanation in

1879 by describing some inertial effects of the breakup mechanism, using stability

analysis to reveal that disturbances with wavelengths larger than the jet’s circumfer-

ence were amplified until the ligaments could pinch off [81, 82]. He also noted that

disturbances with wavelengths roughly 9 times the jet radius grew much faster than

others, resulting in an ability to predict the most common drop size and breakup

time. These two findings encompass the Plateau-Rayleigh instability, which drives

what is generally known as Rayleigh mode breakup.

Other perennial works expanded upon and generalized this early theory. Weber

revealed that air resistance and viscosity both play important roles in jet breakup

speed [115]. Taylor then used potential flow theory to characterize the behavior of

a fluid being accelerated within another, arguing that the density ratio between the

fluids governs the growth of instabilities on the interface [110]. This formed the basis

3
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for what is now commonly known as Taylor mode breakup (often referred to as simply

atomization), wherein a fluid injected into another is broken apart into droplets much

smaller than the initial jet diameter if it carries sufficient inertia. These works suggest

that understanding the competition between inertia, viscosity, and surface tension is

crucial to predicting the behavior of a spray. The Reynolds, Weber, and Ohnesorge

numbers, respectively given by equations (2.1), (2.2), and (2.3), offer a convenient

way to quantify which effects are dominating.

Re =
ρvD

µ
(2.1)

We =
ρv2D

σ
(2.2)

Oh =
µ√
ρσD

(2.3)

In the Reynolds number, ρ is the fluid density, v is the velocity, and D is the

hydraulic diameter, which is usually the orifice diameter in atomization studies. This

number may be interpreted as a measure of whether advection or viscous diffusion is

the dominant process in the flow, and is of course a dimensionless measure of momen-

tum. The Weber number provides a ratio of the fluid’s inertia and its surface tension,

σ. For atomization cases, ρ is usually the density of the ambient gas, v is the rela-

tive velocity, and D is the characteristic length scale (usually the droplet diameter).

The Ohnesorge number compares the effects of viscosity and surface tension, with

the orifice diameter usually used for the characteristic length. The lack of an inertial

dependence in the Ohnesorge number renders it a useful constant when describing

a particular spray system. These three parameters allow for the demarcation of jet

breakup regimes, in which different dominant spray characteristics are observed as

We and Re increase for a given Oh.
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Four spray regimes are generally agreed upon today, though their boundaries

are still debated. These regimes are summarized below according to the thorough

characterization by Reitz [85], with examples presented in figure 2.1.

Figure 2.1: Spray regime examples, reproduced from Reitz and Bracco [84].

1. Rayleigh breakup (Figure 2.1a): The the Plateau-Rayleigh instability produces

droplets of roughly similar diameter to the jet.

2. First-Wind induced breakup (Figure 2.1b): Aerodynamic effects exacerbate the

growth of unstable waves on the interface, producing droplets with similar di-

ameter to those of Rayleigh breakup.

3. Second-Wind induced breakup (Figure 2.1c): Aerodynamic effects are much

more violent, leading to the growth of shorter wavelength disturbances. Droplet

sizes are reduced, and the liquid core near the nozzle exit is shortened.
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4. Atomization (Figure 2.1d): No visible liquid core exists, and droplet sizes are

further decreased. The dominant breakup mechanisms are still being studied.

An example breakup regime map is provided by figure 2.2. It is clear that, for

a given Ohnesorge number, the spray’s regime is determined solely by its Reynolds

number. As the Reynolds number increases through the regimes, aerodynamic effects

due to the relative velocity between the liquid and gas dominate surface tension to an

ever larger degree. This dominance is especially clear in the atomization regime, where

the lack of a visibly intact liquid jet at the orifice exit suggests that surface tension

has been completely overcome and the growth of unstable waves on the interface

no longer governs the breakup rate. This will form the basis of a key modeling

assumption, wherein the details of the liquid-gas interface are neglected altogether.

Figure 2.2: Example spray regime map, reproduced from Reitz [85]. The horizontal
axis displays the liquid Reynolds number, while the vertical axis denotes the Ohne-
sorge number, often referred to as Z.
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2.2 Multi-Phase Nozzle Flow

2.2.1 Cavitation

The local low-pressure regions generated by a separating flow often fall below the

liquid’s saturation pressure, resulting in the rapid phase change known as cavitation.

This phenomenon often occurs at the inlet of straight, round pipes. The cavity

formed downstream of the inlet, often referred to as the vena contracta, reduces the

cross-sectional area available for liquid flow. The discharge coefficient Cd, shown in

equation (2.4), provides a quantitative measure of the losses due to such restrictions,

and is a standard measure of nozzle efficiency. Here, ṁ is the liquid mass flow, A

is the physical cross-sectional area of the nozzle, ρ is the liquid density, and Pu and

Pb respectively represent the pressures upstream and downstream of the nozzle. This

compares the actual mass flow rate through the nozzle to the ideal flow rate based on

the Bernoulli velocity. The discharge coefficient may be broken into separate velocity

and area coefficients to represent different sources of losses, but the total Cd provides

more useful information in this case.

Cd =
ṁ

A
√

2ρ(PU − PB)
(2.4)

The reduction in a straight nozzle’s discharge coefficient due to phase change is

easily predicted using Nurick’s classic cavitation model [70], which is introduced in

equation (2.5). The model compares the local pressure conditions to the prevailing

vapor pressure, Pv. This comparison is then used to adjust the contraction coefficient

Cc, which is described in equation (2.6) according to Hall’s experimental results [40].

It is clear that Cc quickly approaches the limit of 0.62 as the upstream area increases.

Assuming that this limit has been reached is a safe assumption in most practical

cases. This model accurately captures the progressive constriction of the flow as the

pressure differential across the nozzle increases relative to the fluid’s vapor pressure

[98].
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Cd = Cc(
Pu − Pv

Pu − Pb

)
1
2 (2.5)

Cc = 0.62 + 0.38(
Anozzle

Aupstream

)3 (2.6)

As cavitation production increases, the vena contracta expands and the reattach-

ment point of liquid to the wall is pushed downstream. In severe cases, the vapor

will persist all the way through the nozzle, often called super-cavitation. The recir-

culation zone present within the vena contracta is then exposed to the atmoshphere

downstream of the nozzle, allowing for its entrainment upstream. If the downstream

gas propagates to the nozzle’s inlet corner, cavitation ceases completely. This phe-

nomenon, known as hydraulic flip, produces a visibly smooth jet. The turbulence

generated by the flow’s separation and/or cavitation is eliminated, thereby inhibiting

atomization outside the nozzle. However, if the flip is only partial and gas is entrained

but does not reach the inlet corner, turbulence is still generated and atomization is

not adversely affected [104]. Figure 2.3 provides examples of these flow regimes.

Figure 2.3: Visualition of nozzle flow regimes from laminar (a) to turbulent/cavitating
(b,c), to supercavitating/hydraulically flipped (d). Reproduced from [22].

Finally, it is crucial to consider the effects of the geometry of the inlet on the

production of cavitation. Nurick’s model, for example, is only valid for straight nozzles

8



www.manaraa.com

with a sharp inlet corner. As the inlet corner becomes rounded, flow separation is

reduced and the low pressure region responsible for cavitation is diminished. This

transition happens quickly, with cavitation fully eliminated when the inlet corner

radius is 14% of the nozzle diameter [70]. The rapid transition from cavitating to

single-phase flow is demonstrated in figure 2.4.

Figure 2.4: Effects of inlet corner radius on cavitation, adapted from Chaves and
Ludwig [23]. From top to bottom: Sharp, 30µm radius, and 170µm radius inlet
corners. 207µm diameter nozzle, Re=22000.
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2.2.2 Flash-Boiling

Cavitation is considered an interially driven process, where the timescale of mo-

mentum transfer is more important than that of the inter-phase heat transfer. How-

ever, as the liquid temperature increases, the mechanism of phase change transitions

towards that of typical thermal-driven boiling. A somewhat ambiguous regime ex-

ists where a liquid may vaporize due to a decrease in the local static pressure, but

the rate of the process is governed by interfacial heat transfer. A flash-boiling spray,

where a hot liquid leaving a nozzle vaporizes due to a back pressure below the liquid’s

saturation pressure, falls into this regime.

The severity of flash-boiling is usually described in terms of the degree of super-

heat, or a Pa
Ps

ratio, where Pa is the ambient pressure outside the nozzle and Ps is

the prevailing liquid saturation pressure. The Jakob number, introduced in equation

(2.7), may be used to describe the degree of superheat. This number compares the liq-

uid’s sensible heat to its enthalpy of vaporization, essentially quantifying the amount

of energy available to produce phase change. The liquid’s saturation temperature, Ts,

decreases with the ambient pressure, so a low Pa
Ps

and high Ja both indicate a high

degree of superheat.

Ja =
Cp(T − Ts)

hfg
(2.7)

Wu et al. suggest three flash-boiling regimes demarcated by Pa
Ps

, as demonstrated

in figure 2.5 [117]. The first is the sub-cooled condition, where Pa
Ps

> 1 and no

vaporization occurs. As Pa
Ps

falls below 1 and vaporization begins, phase change is

present in the nozzle but a liquid core is still visible. This is the transitional regime.

As Pa
Ps

decreases, more vaporization will occur in the nozzle and the liquid core will

diminish. The flare-flash regime, which begins at a Pa
Ps

of 0.3 according to Wu et al.,

is reached when no liquid core is visible outside the nozzle.
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Figure 2.5: Visualization of flash-boiling regimes, reproduced from [117].

2.3 Experimental Techniques

A variety of fuel-spray characteristics are measurable using well-established exper-

imental diagnostic techniques. Measuring the rate of injection (ROI) of a given fuel

injector is possible with specialized “long-tube” meters, which function by correlating

pressure wave propagation through a chamber to fuel quantity [16]. Common laser

or photographic techniques may be used to characterize ambient gas velocities, drop

sizes, spray angles, and spray tip penetrations. Determining the density distribution

of fuel in a spray is of particular importance for injector development and model val-

idation. Laser-induced fluorescence (LIF), in which the energy emitted by a material

excited by a laser is correlated to the material concentration, would seem capable

of such measurements. However, the dense, irregular droplets, along with the opti-

cal properties of typical fuels, results in significant beam extinction, scattering, and

attenuation near the injector exit which can result in accuracy problems [101, 18].

Optical techniques also fail to characterize the internal nozzle geometry and fuel flow

patterns for typical metal fuel injectors.
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X-Ray techniques have emerged as an attractive alternative, and have been used

extensively to visualize and quantitatively analyze flows in recent years. Heindel, in

a thorough review of the applications of such techniques, attributes this rise in pop-

ularity to the improved performance and attainability of digital detectors and com-

puterized post-processing [42]. In the context of fuel-spray experiments, X-Ray based

radiography and tomography are particularly useful. Radiographic density measure-

ments function on the premise that as a focused monochromatic X-Ray beam passes

through a material, a portion of it is attenuated. If the attenuation coefficient of

the material is measured or known, the reduction in beam intensity can be directly

related to the amount of material in the path of the beam using the Beer-Lambert

law. A raster scan can then be performed to yield a 2D projection of the density

of the material. Tomography measurements are similar, but rely on images of a

wide, polychromatic X-Ray beam passing through an object rather than point-wise

measurements from a focused, monochromatic beam. Using the polychromatic beam

allows more of the metal penetrating high energy photons to be retained, whereas

a monochromatic beam makes quantitative attenuation measurements easier to cal-

ibrate. If a series of 2D images are captured from a sufficient number of vantage

points, tomographic reconstruction allows for the computation of a 3D view of an

object that is not directly measurable. This is the same principle used in a standard

medical CT (computed tomography) scan.

Time-resolved spray radiography measurements and tomography scans of metal

nozzles are also possible, but X-Ray sources with sufficient intensity are not widely

available. The 7BM beamline at Argonne National Laboratory (ANL) was designed to

provide access to a strong enough source for exactly such purposes [55]. The facility

is driven by insertion devices using the 7-GeV synchrotron beam of the Advanced

Photon Source at ANL [1]. All of the X-Ray based data referenced in this work were

gathered at this beamline. An example radiography setup for the beamline is shown
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in figure 2.6. Here, the white beam generated by the insertion device is trimmed

by slits, made monochromatic, focused into a narrow beam, and passed through the

spray onto the detector. The spray itself is then translated by moving the injector

to generate a raster scan. A more thorough description of the beamline is given

by Kastengren et al. [55]. Finally, a metal-penetrating tomography setup for the

beamline is described by Matusik et al. [60].

Figure 2.6: Example 7BM beamline radiography setup, reproduced from [50].

2.4 Computational Fluid Dynamics

As the availability and power of high-performance computing (HPC) resources

continue to increase, computational fluid dynamics (CFD) modeling of sprays has

grown into a widespread industry practice. CFD allows for unique cost savings and

increased insight when compared with experimental testing, but considerable effort
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is required to develop and validate models capable of simulating new problems. The

multi-phase, turbulent, and compressible effects that govern sprays must all be cap-

tured, so spray models are particularly complex. The most popular CFD technique

for sprays is based on lagrangian particle tracking, in which discrete particles of liquid

are injected into a gas and tracked. The liquid, or discrete phase, is modeled from the

Lagrangian reference frame, while the continuous gas phase is modeled using typical

Eulerian methods. A multitude of droplet dynamic models may be applied to the

particles, allowing for rapid characterization of drop sizing, liquid penetration, and

gas velocities for a given spray system. Such Eulerian-Lagrangian (EL) models have

been available since the early 1980s [35]. Despite their popularity, EL models have

inherent limitations due to their underlying assumption that the liquid is comprised

of discrete droplets. The dense liquid core that is often present downstream of the

injector exit, as well as all details of the flow inside the nozzle itself, do not contain

discrete droplets and cannot be simulated. Typically, an injector model is used in-

stead, essentially rolling all details of such areas into a complex boundary condition

that can be developed from experiments [97].

An alternative is to simulate the discrete and continuous phases together in the

Eulerian reference frame, which allows for direct simulation of the internal flow and

near-field spray. However, capturing the interface between the high-density liquid and

low-density gas phases is difficult, as it is essentially averaged over the cell in which

it falls. A number of well-established interface tracking methods exist to alleviate

this problem. The volume of fluid (VOF), initially proposed by Hirt and Nichols,

tracks the liquid volume fraction within each cell and searches for discontinuities

suggesting the presence of an interface [45]. An interface reconstruction method

may then be used to attempt to rebuild the details of the interface. A popular

example is the piecewise-linear interface calculation (PLIC) method, in which a flat

interface is placed such that the cell is split into two volumes each sized to contain
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the entirety of one of the phases [39]. Another approach is to couple the level set

method, which allows for easy tracking of curved fronts [100], to the VOF method.

VOF level set (VOF-LS) methods are especially useful for spray simulations, as they

reduce smoothing problems associated with capturing the curved interfaces of typical

round droplets [108]. These sharp interface approaches can produce extremely high-

fidelity simulations, as preserving the interfacial details allows for the direct capture

of droplet formation and dynamics. However, even small droplets must be discretized

by multiple cells, rendering such methods extremely expensive for the high Re and

We sprays typical of modern fuel injection systems.

A third option is to model the discrete and continuous phases in the Eulerian

reference frame, but allow the interface to remain diffuse. Simply ignoring the details

of the interface is a tremendous simplification, but is justifiable under the correct

conditions. Siebers asserts that under typical diesel spray conditions, the inter-phase

mass, momentum, and energy transport is limited by turbulent mixing, and is not

impacted by interfacial effects [102]. This is in line with the description of the at-

omization regime in section 1.1, in which surface tension is completely dominated by

inertial effects under high We conditions. A turbulent mixing model may then be

used to close the system, and primary atomization models may be used to recover

drop sizing information. The CFD solvers used in this work seek to apply such an

approach to modern fuel spray applications, and will be discussed in detail in Chapter

3. A diffuse interface Eulerian-Eulerian internal flow/near-field spray simulation may

also be coupled to an EL model for downstream measurements, in what is generally

known as an Eulerian-Lagrangian Spray Atomization (ELSA) approach [15].
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CHAPTER 3

APPLICATIONS

3.1 Impinging Jet Sprays

When two liquid jets are directed at one another such that they are self-impinging,

a flat liquid sheet is produced which is unstable due to the violent disturbances caused

by the jet collisions. Doublet impinging jet fuel injectors take advantage of this to

produce accurately distributed, rapidly atomizing sprays. The two main configu-

rations are “like-doublets”, where two identically sized liquid jets are collided, and

“unlike-doublets”, where jets of different geometries are collided and mixed. Unlike

doublets can be used to mix fuel and oxidizer jets in a single injector at a desired

mixture ratio. Self-impinging injectors are particularly well suited to liquid fueled

rocket engines, as they are simple and inherently perform well under high flow rate

conditions since they use the jets’ kinetic energy to drive breakup. The Saturn V’s

F1 rocket engine, for example, used rings of like-doublet injectors alternating between

fuel and oxidizer as seen in figure 3.1. The F1 was also famous for early combustion

instability problems, wherein the fluid and combustion dynamics become coupled and

cause damaging pressure fluctuations and vibrations [72].
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Figure 3.1: F1 engine injector schematic, reproduced from [72].

The F1’s instability problems sparked considerable research efforts into self-impinging

injectors in the 1950s [72]. Rupe, during thorough experimental parameter studies,

observed that the optimal spray distribution from a doublet injector is achieved when

the product of the momentum and diameter of the two streams are the same, as is

the case in a like-doublet with a single liquid [91, 92]. Dombrowski and Hooper found

that for jets with a sufficiently high We, the breakup mechanism is dominated by

impact waves rather than aerodynamic instabilities [28]. Hoehn et al., expanding on

experiments by Nurick and McHale, investigated various unlike-doublet geometries
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and determined that performance near that of circular like-doublet injectors is feasible

[46, 71].

More recently, Anderson et al. and Ryan et al. supported Dombrowski and

Hooper’s findings via phase doppler particle anemometry (PDPA) experiments. They

argued that inertial perturbations in the colliding jets are responsible for generating

the impact waves, especially in turbulent cases [7, 93]. They also noted that droplet

sizes decreased as the jet velocity increased, and that the breakup length of the

liquid sheet was heavily dependent on whether the jet was laminar or turbulent.

Jung et al. used planar LIF to measure the spray distributions generated by like-

doublet injectors [52]. They demonstrated reasonable agreement with a mechanical

patternator, attributing the lack of scattering/extinction/attenuation errors to the

low thickness of the dense liquid sheet. Their experiments were performed at a single

injection pressure of 3 bar, so it is unclear if the reliability of the results would decrease

under more practical operating conditions.

Bush and Hasha found that high speed laminar impinging jets formed a symmetric,

regular pattern resembling a fishbone [20]. Jung et al. noted that the onset of

such a pattern occured at lower jet velocities if slight asymmetries were introduced

[53]. Such asymmetries could be caused by slight misalignment between the jets or

disturbances in the velocity profiles of either jet, which reinforces the importance of

accurately capturing the velocity profile and collision point. Sakisaka et al. performed

phase doppler anemometry (PDA) measurements and attempted to predict the liquid

sheet location using an analytical model, but did not produce an agreement [95].

Indiana et al. used PDA measurements to verify the trend of decreasing drop sizes

with increasing jet velocity, and then correlated their results to mimic industrially

relevant reactive sprays. They note that experiments on impinging jet sprays generally

do not occur under combustion relevant conditions [48]. Finally, Rodrigues et al.

also performed PDPA experiments, arguing that the widely referenced experimental
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results of Ryan et al. may be skewed towards larger droplets because of limited

dynamic range [87].

While experimental literature on impinging jet sprays was introduced over half

a century ago, CFD studies on the topic only began to appear recently. Arienti et

al. used a VOF-LS approach coupled to Lagrangian particle tracking to achieve the

first viable simulation of a like-doublet spray [9]. Tracking smaller structures from

the Lagrangian reference frame allowed them to be removed from the VOF-LS simu-

lation. This, in conjunction with a block-structured adaptive mesh approach, made

the computational costs feasible. They simulated the experimental results of Ryan et

al., achieving reasonable agreement in terms of pressure fluctuation frequencies and

droplet size distributions. However, they noted that grid dependencies could not be

ruled out, and that the sheet breakup length was consistently under-predicted.

Chen et al. performed high fidelity VOF simulations, also on the Ryan et al.

experiments [24]. Their method used adaptive octree mesh refinement (AMR) to

capture the interface without wasting mesh resolution in unimportant areas, and also

removed the smallest droplets in the domain to greatly reduce cost. Their results

for the droplet size distribution agreed with those of Ryan et al. relatively well, but

were shown to be heavily dependent on the maximum refinement level used for the

simulations as seen in figure 3.2. Ruan et al. performed a parameter study on a

like-doublet spray with 8, 000 < Re < 23, 000 and impingement angles from 50 to 110

degrees using an approach similar to that of Chen et al. [90]. They captured various

experimental trends qualitatively, but did not account for the increased resolution

requirements introduced by increasing Re. Finally, Zhang and Wang investigated

the effects of increased/oscillating back pressures, again using a VOF approach with

AMR [121]. They note that as the back pressure is increased or oscillates faster, the

atomization is enhanced. They also note that the impact wave results in a sinusoidal

sheet velocity at the impingement point.
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All of these CFD studies took remarkably similar approaches, and as such have

similar limitations. None took the effects of compressibility or turbulence into ac-

count. The internal flow through the injector was also ignored in all cases, with the

jet instead initialized externally with a plug flow, parabolic, or power law velocity

profile. More importantly, simulating combustion-relevant conditions is challenging

with VOF/VOF-LS methods, as the simulations become progressively more expen-

sive as Re and We increase. In particular, supercritical simulations are not feasible

with such approaches. The current work will therefore apply the previously described

diffuse interface approach to impinging jet spray simulations.

Figure 3.2: Mesh sensitivity in VOF impinging jet simulations, reproduced from [24].
The Reynolds number of the jet was ≈ 12, 000.
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3.2 Gasoline Direct Injection

3.2.1 Overview

Economic and regulatory pressures on automotive manufacturers continue to drive

efforts aimed at increasing the efficiency and cleanliness of the internal combustion

engine. Advances in fuel injection systems remain integral to such efforts, as con-

trolling the temporal/spatial distributions of the fuel-air mixture in the cylinder is

key to achieving control over the combustion itself. Traditional fuel injected engines

introduce fuel either just downstream of the throttle body (throttle body injection,

TBI) or in individual runners on the intake manifold (multi-port fuel injection, MFI),

where it is then drawn into the cylinder on the intake stroke of the engine. The lat-

ter strategy allows the mixture ratio to be tuned in individual cylinders and reduces

the amount of time taken for the fuel to reach the intake valves, thereby offering a

greater degree of control compared to TBI at the expense of complexity. A logical

extension of this would be to bypass the intake system altogether and introduce fuel

directly into the combustion chamber, leading to extremely low-latency control over

the amount of fuel in the cylinder. This strategy is commonly referred to as gaso-

line direct injection (GDI), and is used to create spark ignited direct injected (SIDI)

engines.

A unique advantage of GDI over MFI/TBI is that fuel may be injected at any point

in the engine cycle. Injecting just before ignition reduces knock at high pressures,

which is particularly important for high compression or forced induction applications

at full load. The same strategy can be used at partial load by injecting smaller

amounts of fuel. This creates a fuel-rich environment near the spark plug to facili-

tate ignition without having to close the throttle, thereby reducing pumping losses

[36]. This is referred to as stratified lean combustion. Stratified combustion strate-

gies require the spray to be directed towards the spark plug. Modern SIDI designs

are spray-guided (SG-SIDI), meaning the spray is focused directly towards the plug
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without rebounding off of the piston or cylinder wall (see figure 3.3). SG-SIDI engines

provide significant fuel economy and emissions performance improvements over older

wall guided designs, particularly due to their capability to provide stratified lean com-

bustion over a wide range of operating conditions [31, 73]. However, SG-SIDI engines

are also prone to combustion instabilities and flame propagation issues which lead to

misfires [75, 76]. Solving these issues requires careful control and understanding of

the fuel spray itself.

Figure 3.3: Comparison of SIDI engine injection strategies with typical homogeneous
charge MFI or port fuel injection (PFI). The mixture ratio relative to stoichiometric
conditions is represented by Φ. Adapted from [30].

3.2.2 Spray G Target Condition

Automotive fuel injection systems research represents a complex, multi-disciplinary

problem, rendering robust communication and organization between researchers key.

Sandia national lab’s Engine Combustion Network (ECN) program was introduced

to facilitate open and collaborative engine/fuel injection research spanning multiple

automakers, parts suppliers, academic institutions, government facilities, and other

industry partners in an attempt to solve such challenges [2]. ECN publishes multi-

ple target conditions and standardized research topics, most of which targeted diesel

systems until recently. The ECN “Spray G” condition was created specifically to

encourage GDI research, as it is largely an extension of diesel research and fit well
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with most contributors. Spray G is based on an 8-hole, piezoelectric valve-covered

orifice injector produced by Delphi, visualized in Figure 3.4.

Figure 3.4: External visualization of the Spray G geometry showing standardized hole
numbering. Reproduced from the ECN website [2].

Figure 3.5: Annotated internal Spray G geometry, reproduced from [33].

The internal geometry, shown in Figure 3.5, consists of stepped orifices connected

by a “sac” region which serves as an accumulator for high pressure fuel. The check

ball, or needle, is raised by the piezoelectric actuator to begin the injection event.

Needle lifts for GDI are on the order of 50µm, roughly a quarter of typical diesel

lifts [2]. The needle is located by five guides, rendering the flow pattern inherently
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assymetric. The target operating conditions, as well as sub-conditions intended to

explore a wider portion of the GDI operating envelope, are summarized in table 3.1.

Much of the remaining discussion will focus on the Spray G platform.

Table 3.1: Spray G target condition and selected parametric sub-conditions. Table
generated based on information from the ECN website [2].

Condition G G2 G3 G7 G-M1
Intent Standard Flash-Boiling Early Injection Strong Collapse Multiple Injection
Ambient Temp (K) 573 333 333 800 573
Back Pressure (kPa) 600 50 100 2150 600

Duration (ms) 0.680 0.680 0.680 0.680
0.680 Initial

1.0 Dwell/Rest
0.186 Post

3.2.3 Perennial Challenges

Experimental studies have revealed numerous challenges that differentiate GDI

research from that of diesel sprays. First, depending on the piston’s position during

injection, the in-cylinder pressure can fall below the fuel’s vapor pressure leading to

sustained flash-boiling. To study the effects of such phase change on the injection

characteristics, Wu et al. photographed sprays from sub-cooled, transitional, and

flash-boiling conditions for a multitude of injector configurations [117]. They found

that stronger flash-boiling tended to increase the spray angle, which is in line with

earlier research on simpler nozzles by Reitz [83]. Reitz’s study also suggests that

flash-boiling is generally beneficial for atomization, as fuel droplets decrease in size

due to their liquid vaporizing. Zhang et al. performed a photographic study on a

single hole injector across a range of degrees of superheat [120]. They observed the

same spray angle trend as Wu et al., and also observed that the fuel-gas density

ratio was more influencial under sub-cooled conditions. Wu et al. have also shown

that flash-boiling conditions cause any liquid fuel present after injection to vaporize
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instead of adhering to the tip of the injector, implying the reduction of coking issues

related to such tip-wetting [117].

The multi-hole injectors typical of GDI produce multiple tightly spaced fuel plumes.

Under certain circumstances, these plumes can interact to the point where they are no

longer distinguishable and the spray contains a single large plume. This phenomenon,

dubbed spray collapse, serves as another perennial GDI challenge due to its drastic

effects on the spray’s characteristics (see Figure 3.6). Sphicas et al. shed light on the

mechanism of the collapse itself, observing that under normal Spray G conditions,

a consistent reverse flow of air was present in the center of the spray between the

plumes [106]. This upstream axial entrainment of air, combined with additional air

entrainment in the spaces between plumes, established a re-circulating airflow that

was sufficient to keep the plumes separated. Sphicas et al. assert that high levels

of plume interaction begin to degrade this re-circulation, resulting in a transient re-

duction in the spray angle as the lack of airflow allows the plumes to move inward.

They found that if the plumes continued moving inward, re-circulation was cut off

completely and collapse occured.

Figure 3.6: Visualization of spray collapse, reproduced from [74].

Payri et al. showed that spray collapse leads to a large reduction in spray angle and

an increase in axial penetration [74]. Conservation of momentum links these effects, as

the radial momentum of a wide plume is exchanged for axial momentum in a narrow
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one. Payri et al. also suggest that high temperature conditions lead to higher rates

of fuel evaporation, resulting in an increase in spray angle and consequently higher

level of the plume interactions which drive collapse. Finally, they found that higher

ambient gas densities increased the likelihood that collapse would occur. Wu et al.

also observed partial and total spray collapse in their flash-boiling studies, finding

that the axial length of the collapsed region of the spray increased with the degree of

superheat [117].

A third challenge is posed by the effects of manufacturing imperfections in the

injector on the spray itself. Matusik et al. performed X-Ray radiography and tomog-

raphy experiments on all eight of the standard Spray G sample injectors to examine

the effects of variation between the nozzles. [61]. They observed that the per-hole

rate of injection (ROI) varied between the injectors, attributing most of the discrep-

ancy to inconsistencies in the inlet corner radii of the nozzles causing asymmetric

cavitation. They also observed higher level changes, including a post-injection fuel

dribble, for two of the eight injectors. Duke et al. performed detailed tomography

analysis on a single injector, Spray G #28 [33]. They found an average nozzle di-

ameter of approximately 173µm, notably larger than the 165µm design specification.

Significant defects in flow-critical areas were also observed, and the overall surface

finish appeared to be rough (see Figure 3.7).

The manufacturing process for the Spray G nozzles is micro-electrical discharge

machining (µ-EDM), which is generally considered the industry standard for the mi-

crodrilling of fuel inejctors [80]. Slow drilling times [8], in addition to the previously

discussed issues of surface roughness, defects, and reproducibility, have led manufac-

turers to examine possible alternatives to EDM. Laser drilling techniques, previously

impractical due to the large heat affected zones and recast layers they create, have be-

come more feasible with the development of ultra-short femtosecond duration pulsed

laser strategies [109]. With a sufficiently short laser pulse, the material is ablated
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Figure 3.7: Inclusion type defect observed in Spray G nozzle surface, reproduced from
[33].

rather than melted away, resulting in much smaller recast layers and heat affected

zones [118]. Fuel nozzles manufactured via fs pulsed laser techniques contain sharper,

more reproducible features than µ-EDM, but suffer from defects and small cracks due

to the rapid material ablation [89, 88]. The surface finish is smoother than that of

µ-EDM, and is characterized by the small, uniform ripples visible in Figure 3.8. These

differences, while seemingly subtle, can combine to alter the macroscopic character-

istics of the spray from a GDI type injector. For example, Zhang et al. compared

µ-EDM and laser drilled injectors in an optical engine, observing spray collapse and

higher soot emissions for the latter technique under otherwise identical operating

conditions as Figure 3.9 demonstrates [120]. Incorporating as-manufactured geome-

try into CFD simulations of GDI injectors is therefore important.

3.2.4 CFD Studies

CFD simulations have begun to validate/expand upon experimental studies of

GDI. Moulai et al. successfully simulated the internal and near-field flow of the Spray

G injector using an Eulerian-Eulerian technique, capturing the effects of in-nozzle
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Figure 3.8: Surface finish of fs pulse laser drilled nozzle showing periodic surface
features, adapted from [88]. A pit defect is also present.

Figure 3.9: Comparison of EDM (Inj #8) and laser drilled (Inj #4) nozzle sprays at
various crank angles, reproduced from [120].

cavitation on the external spray [66]. Strek et al. incorporated the experimentally

measured dimensions of the Spray G #28 injector into their simulations [107]. In

addition to the per-hole ROI corellating with the hole area, they found that variations

in the inlet corner radii produced the asymmetric cavitation visible in Figure 3.10.

Baldwin et al. simulated Spray G and G2 injections using mesh motion to capture

the effects of needle lift and wobble [10]. In addition to matching the experimentally

predicted overall ROI, they observed transient, turbulent hole-to-hole interactions

throughout the injection event. These interactions, visualized in Figure 3.11, were

comprised of vortices with a vapor core, or string flash boiling. The low needle lifts
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typical of GDI, as well as the needle wobble, were thought to encourage generation

of the vortices.

Figure 3.10: Simulation of Spray G showing asymmetric cavitation due to inconsistent
inlet corner radii, reproduced from [107]. Alpha represents the fraction of volume
occupied by fuel vapor.

Duke et al. combined X-Ray and neutron tomography to create a CFD mesh

of the entire Spray G #28 injector, including the upstream sections typically ne-

glected in other simulations, proving that simulating as-manufactured geometry with

extremely high fidelity is feasible [32]. Yue et al. used large eddy simulation (LES),

transient needle motion, and VOF to simulate a single hole of the as-designed and as-

manufactured Spray G #28 injector [119]. The as-manufactured geometry was found

to produce a higher number of transient fluctuations in the spray compared to the

as-designed nozzle. Mohapatra et al. introduced a needle sealing algorithm, allowing

start of injection (SOI) and end of injection (EOI) events to be captured [64]. They

verified the vaporization of residual fuel post-injection under flash boiling conditions

[65]. Finally, Rachakonda et al. simulated a single-hole nozzle over various levels of
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Figure 3.11: Total pressure isosurface showing string flash boiling vortices in a Spray
G2 simulation, reproduced from [10].

superheat, finding that wider spray angles occurred under hard-flashing conditions

but otherwised remained relatively consistent [79].

CFD simulations of GDI are still limited in number and scope as a whole, especially

compared to diesel sprays. A workflow capable of examining transient needle motion,

cavitation, flash-boiling, needle opening/closure, and as-manufactured geometry in a

single simulation would be a significant expansion of the existing literature, provide

richer comparisons with existing experimental data, and allow the effects of various

perennial challenges to be weighed against one another. The present work will use a

well validated model as a starting point to produce such a workflow.
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CHAPTER 4

MODELING APPROACH

The two Eulerian-Eulerian diffuse interface solvers used in this work will now be

introduced. The first, CoSigmaY, models liquid injecting into a non-condensable gas

(NCG), and accounts for the effects of compressibility and turbulent mixing. The

second solver, HRMFoam, adds fuel vapor as a third phase. This necessitates the

addition of a phase change model and an accurate thermodynamic property frame-

work. HRMFoam also supports mesh motion, and has recently been expanded with

a sealing function to handle needle opening/closure events. Both solvers were devel-

oped in-house using the Foam-Extend branch of the OpenFOAM framework [116].

OpenFOAM is popular due to its built-in support for parallelism, polyhedral meshes,

RANS/LES turbulence models, and dynamic mesh motion. It also provides a diverse

set of pre and post processing utilities, and benefits from a large user base and active

community support forums.

4.1 CoSigmaY

CoSigmaY is based on the Σ− Y primary atomization model proposed by Vallet

and Borghi [114, 19]. The model essentially argues that under the mixing-limited

conditions previously described, the small scale details of the interface can be mod-

eled rather than resolved. This is very similar to turbulence modeling, where small

velocity fluctuations are modeled via a turbulent viscosity rather than being resolved

individually. The model has been used in a variety of solvers to model air blast

atomizers [11], pressure-swirl injectors [12], and gas-swirled coaxial injectors [112].
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It has also been used extensively in diesel spray modeling, where the high Re and

We requirements are easily met [15, 27, 26, 37]. The model has also been validated

against DNS for diesel sprays [57].

Vallet and Borghi begin by defining an indicator function, Y , that is unity in

liquid regions and zero in gas regions. This allows the mixture to be treated as a

single pseudo-fluid if the transport equation for Y , given by equation (4.1), is solved.

Over-bars refer to mean, or time averaged, quantities, apostrophes refer to fluctuating

quantities, and over-tildes refer to Favre averaged quantities. The mean liquid mass

fraction is therefore given by Ỹ . On the right hand side, ρ̄ũ′Y ′ represents the diffusion

flux between the phases. This term implies that a relative velocity exists between the

phases, and must be closed. If turbulent mixing is assumed to be wholly dominant,

this term may be closed using Fick’s law of diffusion as in equation (4.2). The diffusion

coefficient is taken as µt, the turbulent viscosity, over Sc, the Schmidt number.

∂ρ̄Ỹ

∂t
+∇ ·

(
φỸ
)

= ∇ ·
(
ρ̄ũ′Y ′

)
(4.1)

ρ̄ũ′Y ′ = − µt

Sc
∇Ỹ (4.2)

As Vallet and Borghi describe, this may be an over-simplification in many cases.

Instead, they propose using the transport equation of the diffusion flux. With this

change, the effects of diffusion, interface production, and interface destruction are

all accounted for. Demoulin et al. expanded upon this approach to improve the

performance of the model in regions with increased diffusion [25]. This is an important

addition for liquid-gas multiphase flows where large inter-phase density ratios are

inevitable. The closure, given by equation (4.3), exists as an option in the solver,

but has not been tested thoroughly due to the non-linearities which it contains. The

constant Cp = 1.8, k is the turbulent kinetic energy, ε is the turbulent dissipation

rate, ρg is the gas density, and ρl is the liquid density. This is essentially the Fick’s law
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closure with an additional term to account for the effects of a high density ratio. The

rest of Vallet and Borghi’s model consists of a transport equation for the interfacial

area density, Σ. This portion of the model was not used with this solver in the current

work, and will be detailed in the next section.

ρ̄ũ′iY
′ = −ρ̄

[
νt
Sc

+ Cp
k2

ε
ρ̄

(
1

ρg
− 1

ρl

)
Ỹ (1− Ỹ )

]
∂Ỹ

∂xi
(4.3)

With the Σ − Y model described and options for closure of the diffusion flux

obtained, the rest of the solver is implemented as Garcia-Oliver et al. and Trask et

al. detail [37, 113]. First, the liquid mass fraction is related to the density of the

mixture by equation (4.4). To account for compressibility effects, equations of state

must be used to determine each phase’s density as the pressure changes. The ideal

gas law is used for the gas phase (4.5), and a linear compressibility is used for the

liquid phase (4.6). In these equations, p is the pressure, R is the specific gas constant,

T is the temperature, φl is the liquid’s constant compressibility, and p0, ρ0 are the

liquid’s reference pressures and densitities used for linearization. Isenthalpic flow is

assumed for the cases in the current work, but a bulk enthalpy transport equation

has been implemented and may be solved when necessary [113]. The temperature is

then computed from the bulk enthalpy of the mixture to close the system.

1

ρ̄
=
Ỹ

ρl
+

1− Ỹ
ρg

(4.4)

ρg =
p

RT
(4.5)

ρl = ρ0 + ψl (p− p0) (4.6)

These equations of state are sufficient for the continuity equation (4.7) to be

closed via the chain rule using a volume averaged compressibility for the pseudo-

fluid. The momentum equation (4.8) requires closure for the Reynolds stresses, which
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is accomplished using a turbulence model. These equations are interpolated to faces

and solved via a Pressure-Implicit with Splitting of Operators (PISO) algorithm [49].

Essentially, the velocity is predicted using the pressure from the previous timestep,

and is then updated with a “corrector” once the new pressure is computed. This

process is performed iteratively until convergence is achieved.

ρ̄∇ · ū = − ∂ρ̄
∂Ȳ

DȲ

Dt
− ∂ρ̄

∂p̄

Dp̄

Dt
− ∂ρ̄

∂T̄

DT̄

Dt
(4.7)

∂ρ̄ũj
∂t

+
∂ρ̄ũiũj
∂xi

= − ∂p̄

∂xi
−
∂p̄ũ′iu

′
j

∂xi
(4.8)

4.2 HRMFoam

HRMFoam uses the Σ− Y model in tandem with a phase change model to allow

flash-boiling/cavitating channel flows and near-field sprays to be evaluated in a single

simulation. The solver, initially developed by Gopalakrishnan and Schmidt [38], has

been used extensively to model a variety of injection systems [67, 68, 66, 10, 32]. A

detailed derivation of the solver is presented by multiple authors [38, 99, 79]. The

governing equations will be summarized according to these works. First, the mass

(4.9), momentum (4.10), and energy conservation equations (4.11) are introduced.

Here, φ is the mass flux, ~~τ is the stress tensor which includes turbulent effects, and

h is the bulk enthalpy of the pseudo-fluid encompassing all three phases. Most of

the flows in question are considered isenthalpic, but the enthalpy equation exists as

an option in the solver, mostly to guarantee time accuracy if desired. The additional

source term in the momentum equation, f , corresponds to an artificial drag force.

This is part of a sealing algorithm, which will be introduced shortly.

∂ρ

∂t
+∇ · φ = 0 (4.9)
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∂ρ~U

∂t
+∇ ·

(
φ~U
)

= −~∇p+∇~~τ + f (4.10)

∂ρh

∂t
+∇ · (φh) =

∂p

∂t
+ ~U · ∇p (4.11)

Next, it is useful to define the mixture density in terms of the fuel quality, x, the

non-condensable gas (NCG) mass fraction, y, and the densities of the liquid fuel (ρl),

fuel vapor (ρv), and gas (ρg) as in equation (4.12). The liquid and vapor densities are

looked up in a pre-processed table based on the pressure and enthalpy for every cell.

This table is generated using NIST’s REFPROP application [58].

ρ = (1− y) (1− x) ρl + (1− y)xρv + yρg (4.12)

This equation of state, however, is not sufficient to close the system due to the non-

equilibrium nature of the phase change. In other words, because the time scale of the

phase change cannot be ignored, the instantaneous and equilibrium fuel qualities are

not necessarily the same. The Homogeneous Relaxation Model (HRM), proposed by

Bilicki and Kestin [14], states that the rate of change of the fuel quality is governed by

the instantaneous quality (x), the equilibrium quality (x̄), and a relaxation timescale

(Θ), as illustrated by equation (4.13).

Dx

Dt
=
x− x

Θ
(4.13)

The equilibrium quality is looked up from the REFPROP table, but the relaxation

timescale must be modeled. Downar-Zapolski et al. produced empirical correlations

for Θ by analyzing Reocreux’s “Moby Dick” experiments of flash-boiling flow of wa-

ter through a converging-diverging nozzle [29]. Saha et al. recently produced new

correlations which tune the HRM to GDI sprays [94], but these have not yet been

tested with the current solver. Downar-Zapolski et al. provide separate correlations
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for upstream pressures below or above a transition value of ten bar. Both correlations

relate Θ to the vapor volume fraction, α, and a non-dimensional pressure. In the low

pressure correlation, given by equation (4.14), the pressure, ψ, is solely a comparison

between the local and saturation pressures. In the high pressure correlation, given by

equation (4.16), the fluid’s critical pressure is also included, and the non-dimensional

pressure is labeled ϕ. All case studies in the present work will use the high pressure

correlation, unless the low pressure correlation is explicitly specified.

ΘLP = 6.51 ∗ 10−4α−0.257ψ−2.24 (4.14)

ψ =

∣∣∣∣psat − ppsat

∣∣∣∣ (4.15)

ΘHP = 3.84 ∗ 10−7α−0.54ϕ−1.76 (4.16)

ϕ =

∣∣∣∣ psat − p
pcrit − psat

∣∣∣∣ (4.17)

The effects of compressibility and turbulent mixing may now be closed similarly

to CoSigmaY. The liquid and vapor phases are both assigned a linear compressibility,

and the NCG compressibility is computed using the ideal gas law. The overall mix-

ture compressibility is a volume average of the compressibilities of each phase. The

transport equation for y is the same as equation (4.1), but with the opposite sign on

the right hand side. This accounts for the fact that the NCG mass fraction is the

complement of the indicator function used in the previous section. The expression for

the mixture density is then expanded via the chain rule as seen in equation (4.18)[10].

This expression is then combined with the discretized momentum equation and the

continuity equation, allowing iterative solution via a PISO approach as detailed by

[99]. The thermodynamic properties are updated at each timestep.

Dρ

Dt
=
∂ρ

∂p

∣∣∣∣
x,h,y

Dp

Dt
+
∂p

∂x

∣∣∣∣
p,x,y

Dh

Dt
+
∂p

∂y

∣∣∣∣
p,h,x

Dy

Dt
(4.18)
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Mohapatra et al. recently added a sealing algorithm to the solver, allowing needle

opening/closure events to be modeled [64]. When the needle’s vertical displacement

from its seat falls below a user-specified threshold, an artificial drag force is applied to

cells within a user-defined bounding box. This allows pre and post-injection dynamics,

multiple injections, and accurate initial conditions to be simulated without expensive

topology changes. This drag force, which is added to the momentum equation as a

source term as previously described, is defined in equation (4.19). Here, Sf is named

the sealing factor, and Sd is a drag constant. The sealing factor, defined in equation

(4.20), gradually trends towards the seal constant, S∞, based on a time relaxation

factor τ . This avoids the spurious water hammer effects which would arise from

discontinuous changes in the drag force. When sealing is activated, the seal constant

is set to unity for cells within the bounding box. In all other situations, the seal

constant is zero.

f̄ = ρ~U
Sf

Sd

(4.19)

S̄f = S∞

(
1− e−( tτ )

)
(4.20)
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CHAPTER 5

PRELIMINARY CASE STUDIES

5.1 Impinging Jet Sprays

The CoSigmaY solver was used to simulate the spray from a like-doublet impinging

jet injector. X-Ray radiography experiments by Halls et al. were used to validate the

results [41]. The injector had an enclosed an angle of 60 degrees, orifice diameters

of 0.51mm, and length-to-diameter
(
L
D

)
ratios of 47. The L

D
of the free jets before

the point of impingement was approximately 6. The experiments consisted of water

injected into quiescent air at velocities of 30, 60, and 90m/s, resulting in a Reynolds

number range of 5, 200− 15, 500.

The experiments measured the equivalent path length (EPL) of liquid, essentially

projecting the 3D liquid volume fraction (LVF) onto a 2D plane by integrating along

the path of the X-Ray beam. The measurements were taken from two vantage points.

The first scanned the major axis of the spray such that the jets were superposed on

one another, as the visible light image shown in Figure 5.1 illustrates. The injector

was then rotated 90 degrees to scan the minor axis of the spray, thereby allowing each

free jet to be captured separately. Extracting the peak EPL location from each free jet

allowed the jet crossing point to be accurately determined via trigonometry. Accurate

and precise knowledge of this location is essential, as it allows the origins of the

computational and experimental domains to be matched for quantitative comparisons.

Three computational grids were created for the simulations, with cell counts rang-

ing from 580 thousand to 2.9 million. This enabled a grid dependence study, which
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Figure 5.1: Visual light image of the impinging jet spray used in the experiments,
reproduced from [50]. Re = 10, 300 .

revealed slightly better peak EPL predictions as mesh resolution increased (see Fig-

ure 5.2). The remaining simulations were performed using the high resolution mesh

only. Each grid took advantage of the two symmetry planes in the geometry to sim-

ulate only a quarter of the domain, resulting in a 75% reduction in cell count. Local

refinement was used to provide adequate resolution near the point of impingement

while ensuring the overall cell count remained manageable. Figure 5.3 shows one of

the grids used in the study. Nominally second order TVD flux limited schemes were

used to ensure stability. The k−ω SST turbulence model was used, with a turbulent

intensity of 2% applied at the liquid inlet and wall functions applied to the nozzle

surface. The computations were performed until a quasi-steady state was observed.

The steady state results were then extracted for post-processing. First, a grid

of sample lines was created in the simulation domain. The LVF values were then
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Figure 5.2: Grid dependence study results based on a sample plane 0.59mm down-
stream of the impingement point. The predicted peak EPL rises slightly with the
mesh resolution. The dip near the center of the spray in the middle resolution case
is likely an artifact caused by the symmetry boundary condition.

integrated along each line, yielding a field of EPL values. The computed EPL was

doubled and mirrored about the impingement plane to reconstruct the full domain.

Figures 5.4,5.5, and 5.6 compare the computational and experimental EPL results at

various locations downstream of the jet crossing point. The EPL closest to the im-

pingement point is predicted very well, which suggests that the thickness of the liquid

sheet is being captured accurately. The EPL towards the center of the spray is con-

sistently under-predicted further downstream, but the agreement improves towards

the edges. The overall trends improve as Re, and consequently We, increase. This

improvement suggests that the model would be well-suited for combustion-relevant

conditions, particularly when the spray becomes supercritical.
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Figure 5.3: Example impinging jet spray mesh showing areas of local refinement.

Figure 5.4: EPL vs. Horizontal position at various downstream displacements,
30ft/s. The origin is calibrated to the jet crossing point. Experimental data was
limited to the near-field for this flowrate.
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Figure 5.5: EPL vs. Horizontal position at various downstream displacements,
60ft/s.

Figure 5.6: EPL vs. Horizontal position at various downstream displacements,
90ft/s.

42



www.manaraa.com

5.2 Gasoline Direct Injection: RANS/LES Comparison

5.2.1 Overview

The transient vortices (see Figure 3.11) captured by Baldwin et al. are highly

dependent on turbulence modeling [10]. The Baldwin et al. simulations used an

Unsteady Reynolds Averaged Numerical Simulation (U-RANS) approach, which es-

sentially time-averages the Navier-Stokes equations and adds a modeled fluctuating

component to the velocity. RANS methods struggle to capture transient phenomena

such as transition and flow separation, but are nevertheless the standard for industrial

CFD simulations [44]. Spalart and Venkatakrishnan note that this is likely to remain

the case for the forseeable future, and warn against over-confidence in such methods

and even CFD in general [105]. Large Eddy Simulation (LES) is an increasingly pop-

ular alternative to RANS. LES spatially averages the spray, effectively using the mesh

size as a low-pass filter for the Navier-Stokes equations. Features with length scales

greater than that of the mesh are directly resolved, while “sub-grid scale” (SGS)

stresses are modelled. While LES is still not practical for high-volume industrial us-

age due to its much higher mesh resolution requirements, it outperforms RANS for

many flows, particularly those where separation occurs [13, 17, 21, 59, 86, 96, 111].

This case study will investigate the effects of turbulence modeling on GDI simu-

lations with moving needles. RANS and LES Spray G simulations will be performed

under identical operating conditions to draw direct comparisons between the two ap-

proaches. The RANS simulations will use the standard OpenFOAM implementation

of the k − ω SST model [43, 62, 63]. The LES simulations will use the OpenFOAM

implementation of the one-equation eddy model [56], with the SGS viscosity portion

of the model replaced with the WALE approach proposed by Nicoud and Ducros [69].

The WALE model uses the square of the velocity gradient tensor to model the SGS

stresses, and performs well in wall-bounded flows without the need for a dynamic

LES approach [69]. Nominally second order Gamma differencing schemes were used
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in all simulations. Finally, the Foam-Extend tetFEM library library was used for

mesh motion [51].

First, a static needle grid dependence study will be performed using the as-

designed, or “Generation 1”, geometry to ensure adequate resolution is used for the

moving needle simulations. The moving needle cases will use a geometry with modi-

fied dimensions based on X-Ray measurements of individual holes of the Spray G #28

injector. This “Generation 3” geometry, in addition to the as-designed geometry, are

available via the ECN website [2]. The moving needle simulations will be compared

against experimental data previously published by Duke et al [33]. These data were

also used for simulation validation by Strek et al [107]. The standard Spray G oper-

ating conditions will be used for the grid dependence study, while slightly modified

conditions will be used in the moving needle cases to match the experimental setup

at ANL. Table 5.1 summarizes these conditions.

Table 5.1: Operating condition summary.

Property Spray G ANL
Injection Pressure 20 MPa 19 MPa
Back Pressure 600 kPa 315 kPa
Fuel Iso-Octane Viscor
Ambient Gas Nitrogen Nitrogen
Fuel Temperature 90◦ C 25◦ C
Ambient Temperature 300◦ C 20◦ C

Five computational domains were created. Three grids with increasing resolution

were created using OpenFOAM’s SnappyHexMesh for the mesh sensitivity study, with

the needle placed at the default 45µm lift present in the Generation 1 geometry. Two

refinement levels were used, as illustrated by the sample static mesh in Figure 5.7.

The region upstream of the needle seat was omitted for simplicity and cost savings,

as the thin sections near the needle guides required several extra refinement levels to
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mesh successfully. The grids for the RANS and LES moving needle cases were then

generated using Star-CCM+, as it handles such thin regions without significant user

intervention. Starting the moving needle simulations with a very low needle lift is

desirable, as it minimizes the discrepancy between the simulation and experimental

start times. However, meshing at very low lifts causes a large increase in the cell

count. To circumvent this, the mesh was created with the needle at 10µm of lift,

with dynamic mesh motion subsequently applied to move the needle to its starting

position of 2.5µm. Figures 5.8 and 5.9 present samples of the moving needle meshes.

Finally, Table 5.2 summarizes the cell sizes for all five grids. The first three rows refer

to the static meshes, and the last two describe the moving needle meshes.

Figure 5.7: Sample of the “4x” resolution static needle mesh.

Table 5.2: Summary of mesh sizing statistics.

Mesh Cells (Millions) Nozzle Refinement Downstream Refinement
1x 2.90 18µm 36µm
2x 5.57 14µm 28µm
4x 11.01 11µm 22µm
RANS 3.02 10µm 40µm
LES 7.72 6.25µm 25µm
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Figure 5.8: Sample of the LES moving needle mesh.

Figure 5.9: Detail view of the LES dynamic mesh. Three refinement levels are visible,
and the extremely thin boundary layer cells on the nozzle walls are discernable.
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5.2.2 Results: Grid Sensitivity Study

The results of the grid sensitivity study will now be presented. Grid sensitivity

was evaluated in terms of mass flow rate convergence and contours of the fuel mass

fraction for both RANS and LES. Pope suggests that the SGS kinetic energy should

make up no more than 20% of the total kinetic energy in an adequately resolved LES

computation, so the LES cases were also evaluated in terms of this metric [78]. Given

the absence of an ensemble average, the velocity at each timestep was compared to

a time-averaged velocity. Figures 5.10 and 5.11 present mass flow rate time histories

for the RANS and LES cases respectively. The flow rates remain largely unchanged

as the mesh resolution increases, suggesting that the results are converged by this

metric. The inital fluctuations are a consequence of acoustic pressure waves due to

the large pressure gradient imposed as the initial condition. The frequency of these

pressure waves appears to change with the mesh resolution for the RANS cases, but

the LES frequencies appear steady. This highlights the superior time accuracy of LES

compared to RANS.

Figure 5.10: Static RANS mass flux results. Legend entries refer to the mesh used
(see Table 5.2).
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Figure 5.11: Static LES mass flux results. Legend entries refer to the mesh used (see
Table 5.2).

Next, Table 5.3 shows time-averaged fuel mass fraction contours for the minimum

and maximum grid resolutions. The results here appear relatively steady, with the

spray cone angle largely unchanged as the cell sizes decrease. The distribution of fuel

between the plumes changes slightly for the LES cases, but a longer runtime would

likely reduce such discrepancies. RANS predicts far more entrainment of nitrogen into

the counterbores than LES. Examining the LES cases reveals that gas entrainment

was highly transient, suggesting that RANS is failing to capture important time-

resolved phenomena.

Finally, the average Pope criterion is presented in Figure 5.12 for the 4x resolution

LES case. The nozzle walls, counterbore walls, and inlet corners appear significantly

under-resolved by this metric. The lower resolution cases (not pictured) exhibited pro-

gressively worse performance in these regions. This is unsurprising, as the resolution

requirements of LES increase drastically near walls. An order of magnitude reduction

in the cell sizes is likely necessary to achieve proper resolution of the boundary layer

and satisfy this criterion, but the cost of such a reduction would be tremendous. As
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Table 5.3: Time-averaged fuel mass fraction contours for the RANS (left) and LES
(right) static cases, 1x (upper) and 4x (lower) resolutions.

a compromise, an additional level of refinement was awarded to the wall-bounded

portions of the geometry for the moving needle cases. Nevertheless, the results of the

grid dependence study are promising overall, as no macroscopic changes in behavior

were noted as the resolution increased.
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Figure 5.12: Pope criterion results, “4x” resolution LES case. kRatio represents the
fraction of the total (SGS and resolved) kinetic energy generated by the SGS model.

5.2.3 Results: Moving Needle Simulations

The moving mesh simulations were performed once cell sizing was selected based

on the results of the grid dependence study. The 680µs needle motion profile from

the ECN website [2], including both lift and wobble motion, was used to actuate the

injection. The sealing algorithm was disenganged when the needle lift exceeded 2.6µm

of total lift, or 0.1µm greater than the initial lift. End times for the simulations were

placed shortly after SOI effects dissipated, allowing a short portion of the quasi-steady

injection phase to be captured without the expense of a full duration computation.

Figure 5.13 compares the simulated ROI with the X-Ray radiography and long

tube meter data. The long tube data are based on Spray G operating conditions, and

are therefore included only for reference (see Table 5.1). Both simulations track the

radiography measurements relatively well as a whole, with the LES results providing

marginally better agreement. The simulated ROI was computed by measuring the

flux through the nozzle holes, whereas the radiography data tracked the rate of change
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of the fuel in the measurement area. This results in the apparent early ramp-up of

the simulated ROI, as the fuel must continue through the counterbores and past the

injector tip before being picked up by the radiography measurements.

Figure 5.13: Comparison between the simulated and experimentally measured ROI for
the moving needle simulations. Time is relative to the commanded start of injection
(CSOI).

Next, the simulated projected mass is compared with the radiography data. The

projected mass is essentially the mass per unit area in the path of the X-Ray beam,

much like the EPL measurements in the previous section. However, in this case the

fuel density is integrated in the CFD post-processing, as opposed to the LVF used

in the previous section. Figure 5.14 presents the projected mass at a time of 407µs

after CSOI.

Both RANS and LES predict the spray cone angle and qualitative jet structure

relatively well, with LES performing slightly better in terms of capturing separation

between the plumes. However, both simulations over-predict the projected mass in
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the near-field region and under-predict the fuel penetration. The CFD post-processing

allows for a much higher sampling resolution, which may contribute to the near-field

discrepancy. The external spray results may also be influenced by the proximity of the

outlet boundary, as a 9mm diameter hemispherical plenum was used. This places the

outlet boundary just over 3.5mm downstream of the injector tip, which may affect air

entrainment patterns, pressure values, and penetration predictions in the simulated

external spray domain.

(a) Radiography projected mass measurement

(b) RANS simulated projected mass (c) LES simulated projected mass

Figure 5.14: Projected mass comparison at t = 407µs.

Figure 5.15 compares density results at a location of z = 2mm in ECN coordinates,

effectively 2mm downstream from the injector tip. RANS predicts the qualitative
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structure of the plumes with some success, although the plumes appear to be too

diffuse. The LES results are quite different, displaying sharp, asymmetric plumes.

These structures have been observed in time-resolved X-Ray measurements [34]. The

experimental data currently being referenced were ensemble averaged over 30 injection

events [33], so the plumes appear to share more simularities with the inherently

time-averaged RANS data. Time averaging these sample planes over a full-duration

injection event would likely yield better results. The outside edges of the plumes are

close to the domain limits this far downstream, implying that proximity of the outlet

boundary adversely affects these results as well.

(a) Radiography sample plane

(b) RANS sample plane (c) LES sample plane

Figure 5.15: Density sample plane comparison at t = 407µs, z = 2mm.
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Finally, the turbulent vortices were visualized according to the process used by

Baldwin et al. [10]. Total pressure isosurfaces were created at 14MPa and colored by

static pressure, as seen in Figures 5.16 and 5.17. The RANS vortices are qualitatively

similar to those predicted by Baldwin et al., whereas LES predicts a higher number

of smaller, more chaotic structures. These differences would likely yield discrepancies

in per-hole ROI between the two approaches over a full injection duration, but would

not cause macroscopic changes. Vortex visualizations in terms of the Q and λ2 criteria

were also created [47], but the high number of small structures made it difficult to

draw useful conclusions.

Figure 5.16: RANS turbulent vortices, t = 407µs.

In general, both RANS and LES performed adequately in terms of qualitative ex-

ternal spray characterization and quantitative ROI prediction. LES produced slightly

more accurate results, likely due to its ability to resolve transient effects. Grid sen-

sitivity analyses showed that while the LES results appeared converged in terms of
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Figure 5.17: LES turbulent vortices, t = 407µs.

macroscopic phenomena, the wall bounded portions of the flow would require a large

increase in cell resolution to properly resolve the boundary layers. Given the broad

similarities between the results, LES may not warrant the cost premium it carries

over RANS for moving needle GDI simulations.

5.3 Diffusion Flux Closure Effects

The previous section revealed that HRMFoam over-predicts the density of the fuel

plumes just downstream of the injector tip. One possible contributor to this is the

use of Fick’s law of diffusion to close the diffusion flux term in the NCG transport

equation. This term, reproduced in equation (5.1), governs the rate at which the fuel

and gas mix, and thereby plays an important role in determining the downstream

density distribution. This suggests that improving upon the basic Fick’s law closure

could improve the agreement between the simulations and experiments.
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ρ̄ũ′Y ′ = − µt

Sc
∇Ỹ (5.1)

To test this hypothesis, the transport equation for the NCG mass fraction in

HRMFoam was modified to use the Demoulin et al. closure discussed previously

and reproduced in equation (5.2) for convenience. The Laplacian was solved using

Foam-Extend’s built in explicit nonlinear solution methods. A loop was included

to solve the equation iteratively until the initial residual fell below a user-specified

threshold. This ensured that the Laplacian for the current and next time steps were as

consistent as possible, thereby increasing stability. Even so, initial tests revealed that

the pressure solution became incredibly unstable with the modified NCG equation,

especially in regions with large gradients in both pressure and NCG mass fraction.

The NCG mass fraction is included in the pressure equation via the chain rule, so it

is unsurprising that large gradients in both fields stress the solver. To combat this

instability, the increase in diffusion due to the additional source terms was limited

to two orders of magnitude greater than the diffusion predicted by the Fick’s law

closure. Determining a more physical limit would be worthwhile should the modified

equation show promise.

ρ̄ũ′iY
′ = −ρ̄

[
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Sc

+ Cp
k2

ε
ρ̄

(
1

ρg
− 1

ρl

)
Ỹ (1− Ỹ )

]
∂Ỹ
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(5.2)

The modified and original solvers were both used on a typical static needle Spray

G case to compare the performance of the two flux closures. The mesh and operating

conditions used were identical to the “1x” U-RANS case used in the grid dependence

study discussed in the previous section. The simulations were performed until a quasi-

steady state was observed, at which point the solutions were time-averaged over a

period of 50 microseconds. First-order upwinding schemes were used for advective

terms. This represents a significant reduction in accuracy, but the increased stability

allowed for larger timesteps and consequently shorter simulation runtimes. The goal
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of the current case study is an apples-to-apples comparison of the two models, so this

was deemed an acceptable tradeoff.

Figure 5.18: Average projected mass profiles for the Fick’s law and Demoulin et al.
diffusion flux closures.

Figure 5.18 presents the average projected mass predicted by both models. The

plume structures are strikingly different than those of the previous study. The Fick’s

law closure case is identical to the “1x” U-RANS grid dependence simulation from

the previous study except for the change in advection schemes, suggesting that the

difference in plume structure is entirely due to the use of upwinding. The first notable

difference between the two models is the increased amount of fuel between the plumes

predicted by the Demoulin et al. closure. This does not constitute spray collapse, as

the plumes appear fully separated just downstream of the injector tip. Nevertheless,

the high density between the plumes is unrealistic. Investigating the magnitude of

the diffusion flux term in the NCG mass fraction transport equation, as shown in

Figure 5.19, shows that significant levels of diffusion occur in the center of the spray.

No large density gradients exist outside of the plume boundaries, suggesting that the

model is predicting an unrealistically high diffusion coefficient between the plumes.

Taken as a whole, the Fick’s law of diffusion closure appears to be simpler, more
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stable, and more accurate than the Demoulin et al. closure, and it will therefore

continue to be used in subsequent simulations in this work.

Figure 5.19: Cut plane of the instantaneous diffusion flux (Demoulin et al. flux
closure) in the NCG mass fraction transport equation during quasi-steady state.
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CHAPTER 6

MOVING MESH SIMULATION WORKFLOW

6.1 Motivation

Including as-manufactured geometry into future fuel injector simulations, the im-

portance of which has been discussed in previous sections, requires a new mesh mo-

tion approach. Current methods rely on the tetFEM library within Foam-Extend

[51]. This library decomposes each cell into tetrahedrons, assigns stiffness properties

to each tet cell based on its quality metrics, and performs a finite element method

calculation in conjunction with Laplacian smoothing to distribute the “loads” pro-

duced by the required motion. As Jasak and Tukovic demonstrate, this approach

allows significantly higher mesh displacements to be reached before the mesh be-

comes degenerate [51]. This allows the full needle motion event, including both axial

lift and off-axis wobble, to be simulated on a single mesh. However, the library has

several limitations. First, it is highly dependent on having consistent cell types. It

is expensive and difficult to decompose polyhedral cells with inconsistent shapes and

high face counts. In internal tests, the library simply failed to converge for even a

single timestep of motion for meshes generated with several packages. Tetrahedra

and hexahedra appeared to be the most reliable cell types for convergence. This is

problematic, as the complicated features present in as-manufactured geometries re-

quire modern, powerful meshing tools that utilize many cell types to be processed

accurately and efficiently.

Next, even with a compatible mesh, the performance of the library is poor. To

examine this, a comprehensive scaling study was performed using HRMFoam. A
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mesh with 4.2 million hexahedral cells was used for all cases. The mesh was decom-

posed into 48, 96, and 144 cores, representing 1, 2, and 4 nodes of the Stampede 2

computing cluster where the study was performed. The compute nodes utilized two

Intel R©Xeon Platinum 8160 “Skylake” processors, each containing 24 cores at a nomi-

nal clock speed of 2.1GHz. The processors each have six memory channels and utilize

AVX-512 instruction sets, both of which result in significant performance increases for

CFD when compared with previous generations of Xeon processors. A fixed timestep

of one nanosecond was set, and the endtime was set at 0.5 microseconds. This results

in a benchmark test comprised of startup tasks, 500 simulation timesteps, and shut-

down tasks. Data output was disabled for the simulations to omit the impact of IO

performance as much as possible. A simulation was performed on each decomposed

mesh, and the wall time was recorded as reported by Foam-Extend. The study was

initially performed for a static-needle configuration, and was then repeated for the

tetFEM library.

A third mesh motion library, the “displacementLaplacian” library in Foam-Extend,

was also tested. This library moves points on a user-specified boundary based on an

input table containing displacement and time information. The point displacements

are then interpolated to cell centers, at which point a Laplacian is solved using a

user-selectable motion diffusivity scheme to control the distribution of the motion. In

this work, a new diffisivity was written which increases linearly with the distance from

the specified boundary. In the context of a moving-needle fuel injection simulation,

this results in most of the motion being absorbed by the cell layers closest to the nee-

dle. These are normally high quality, relatively uniform boundary layer cells, which

stretch quite far before their quality is compromised. Once the Laplacian has been

solved, the motion of the cell centers is interpolated back to the points, and the mesh

is updated. This technique is much simpler, as it eliminates the need to decompose

cells into tetrahedra and does not require finite element method solutions. However,
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this simplicity does not come without cost, as cell quality deteriorates much faster

than the tetFEM library for a given amount of needle motion. The consequences of

this will be discussed shortly.

Figure 6.1 presents the results of the performance study in terms of elapsed wall

time vs. node count for all three motion types. Table 6.1 quantifies the speedup

in terms of percent of linear scaling, and also includes the computation of a “grind

factor”. Linear scaling refers to the notion that for an idealized parallel program, an

additional one-hundred percent speedup would be achieved every time the number

of processors is doubled. If this speedup were plotted on a log-linear scale versus

the number of processing cores used, it would then appear to be linear. The grind

factor allows the cost of the code to be quantified in terms of CPUhours
Cell∗T imestep

, and was

computed based on the single node wall clock time to exclude the effects of network

architecture. For the moving-needle cases, the needle was lifted at a steady 2m
s

to

achieve one micron of lift by the end of the simulation.
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Figure 6.1: Benchmark test results.

The first notable result is that for all motion libraries, a super-linear speedup was

achieved for the 2 node cases. The Stampede 2 “Skylake” nodes have a large cache

capacity, with 114MB per node split between L2 and L3. As the simulation is decom-

posed across more nodes, more data can be accessed from cache, skipping the slow
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Table 6.1: Benchmark test results.

Motion Grind Factor % Linear, 2 Node %Linear, 4 Node
Static 5.37e− 5 107% 114%
Laplacian 6.98e− 5 101% 96%
tetFEM 8.13e− 5 104% 64%

trip to main system memory which limits the performance of most CFD codes. The

performance increase from this phenomenon is significant enough that it outweighs

any losses due to inter-node communication, thereby achieving super-linear speedup.

This continues for the 4 node static-needle case, while the displacementLaplacian

library falls just below linear. The tetFEM library displays hardly any additional

speedup compared to the 2 node case. This poor scaling is another weakness of the

library. Previous attempts to run highly parallel cases with this library were unsuc-

cessful, as the speedup trends towards zero quickly as the core count increases further.

The tetFEM library also carries a higher grind factor than the displacementLaplacian

library, which is unsurprising due to the significantly more complicated model. Given

the results of this performance study, a new workflow to simulate as-manufactured

geometries will be developed based on the displacementLaplacian motion library.

6.2 Geometry Preparation and Case Setup

The test geometry for this workflow is based on a preliminary X-Ray tomography

reconstruction of the Spray G 28 injector, created by Dr. Brandon Sforzo at Argone

National Lab. Key dimensions of the geometry are summarized in Table 6.2 based

on documentation from the ECN website [2]. The geometry was truncated at the

needle guides. This requires the inlet boundary condition to be enforced on the

extremely thin section between the needle and the guides, which is problematic even

for a static-needle simulation. In addition, the tomographically scanned needle was

included, which would eliminate the possibility of placing uniform boundary layer
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cells near the needle surface to encourage stable mesh motion. To overcome these

challenges, the X-Ray geometry was trimmed 0.31mm above the ECN origin. The

nominal geometry, obtained from the ECN website, was then cut in the same location.

The two geometries were then stitched together using Blender’s LoopTools plugin, as

seen in Figure 6.2. The edge loops left over from trimming the geometry are selected,

and faces added between them. The end result retains a smooth needle and seat

region, allowing for much easier mesh motion convergence and boundary condition

enforcement. The most difficult part of this process is manually aligning the nominal

and experimental geometries, as any errors will alter the results of the simulation.

Automatation of this process would be beneficial in the future.

Table 6.2: Summary of key nozzle dimensions (all units in microns).

Property Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Hole 6 Hole 7 Hole 8 Design
Nozzle Diameter
(Upstream End)

177 172 168 172 172 172 166 170 165

Nozzle Diameter
(Downstream End)

177 172 172 175 175 172 170 172 165

Inlet Corner Radius 17 19 10 15 19 7 6 7 0

The next challenge posed by the X-Ray geometry was mesh generation. The

extremely intricate and random surface features are quite difficult to mesh, and doing

so with a typical block based approach is infeasible. In addition, to allow the entire

needle motion event to be simulated, multiple meshes must be created. Since the

displacementLaplacian library simply smooths the motion and does not attempt to

maintain cell quality, periodic re-meshing is required as the needle is raised and

lowered. The solution is then mapped from mesh to mesh as the simulation progresses.

This is accomplished using the standard “mapFields” utilities that are available in

both Foam-Extend and OpenFOAM. For the current work, the OpenFOAM 5 version

of the utility is used, as it allows the user to select between multiple interpolation

options. The method selected for the current simulations simply maps solution data
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to the nearest cell of the new mesh. Mass conservation is not guaranteed using

this method, but it was used for the present simulations due to its consistent stability

during initial tests. The development of a more robust mapping method would benefit

such workflows in the future.

This strategy essentially uses the meshing algorithm itself to maintain cell quality.

While this is a much more pragmatic and less elegant approach than that posed

by the tetFEM library, it is simpler to put into reliable practice, and allows for

fast simulations on much larger and more complicated meshes. The accuracy of

the mapping algorithm only affects the start and end of the injection event, as the

majority of the injection is at a relatively steady lift and consequently remains on

the same mesh. For the current study, the initial mesh was created at 10 microns of

needle lift, with additional meshes used every subsequent 5 microns up to the needle’s

peak lift of 50 microns. A hemispherical spray plenum 20mm in diameter was used,

much larger than the 9mm diameter plenum used in previous sections.

Figure 6.2: Visualization of the experimental and nominal geometries before and after
stitching.

The initial mesh was created using the polyhedral, thin, and prism meshers in

Star-CCM+, with the resultant mesh imported into OpenFOAM. This results in a

very high quality mesh, especially in the thin needle seat region as seen in Figure 6.3.

However, Star-CCM+ does not appear to accurately capture all surface features. In
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addition, this combination of meshing algorithms must be run in serial, leading to a

lengthy mesh generation process. The cell counts required to adequately resolve the

nozzle regions were also quite high, with the final mesh containing approximately 3.1

million cells despite a relatively coarse section in the plenum and poor resolution of

surface features.

Figure 6.3: Sample view of the Star-CCM+ mesh for the Spray G 28 injector at 10
microns of needle lift. The polyhedral core cells, prism layer boundary cells, and
special thin cells in the needle seat region are all visible.

The rest of the grids were generated using OpenFOAM’s SnappyHexMesh, as the

higher needle lifts were more suitable to its cut-cell method. This application is open

source and highly parallelized, allowing for free and fast mesh generation on large

numbers of processors. SnappyHexMesh also captures the intricate surface features

quite well, as evidenced by Figure 6.4. The user specifies a maximum number of

allowable octree refinements from the given base cell size on a given surface. Snappy-

HexMesh then refines the cells around the surface until the normals of adjacent faces

align within a user-specified tolerance angle, or until the user-specified maximum re-
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finement level is reached. Once the refinement is complete, the mesh displacement is

smoothed until the cells fit the input surface as closely as possible. This allows small

surface features to be resolved quite sharply (see Figure 6.5) without an unnecessary

increase in global cell count, all with little effort on the part of the user. Finally,

refinement regions were set in the spray plenum as seen in Figure 6.6. The refinement

regions were identical for all of the SnappyHexMesh grids which were created. This

alleviates a significant portion of the mass conservation concerns generated by the

solution mapping, as the accuracy of mapping to the nearest cell on the new mesh is

highest when the meshes are identical. Final cell counts were approximately 3.6-3.9

million cells depending on the needle lift.

Figure 6.4: Outside view of a sample SnappyHexMesh grid, showing accurate capture
of intricate surface features.

Finally, with mesh generation complete, an initial condition was developed for

both of the operating conditions selected for testing. These comprised the ANL Spray

G equivalent previously discussed, as well as a new ANL Spray G2 equivalent to match

upcoming experiments of a flash boiling condition. These are summarized in Table

6.3. Fuel property data were generated generated using NIST’s REFPROP software
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Figure 6.5: Detail view of a sample SnappyHexMesh grid near a nozzle to counterbore
step, showing local refinement to capture the sharp region.

as before [58]. The ANL-G2 condition uses neat iso-octane, which is not doped with

the Cerium contrast agent used for the ANL-G experiment. This removes the need to

understand how the Cerium agent behaves when the fuel vaporizes, which will greatly

simplify comparisons with flash-boiling simulations. For the current comparisons

with the ANL-G experiment, it is assumed that the doping agent simply modifies

the density and viscosity of the isotropic mixture. Vaporization is mostly limited

to cavitation within the nozzle for this condition, so this is deemed an acceptable

simplification.

In previous works, initial field values were set based on user input, often comprised

of a hyperbolic tangent pressure ramp in the sac with a matching transition from fuel

to NCG. This is not as realistic as possible, and can affect results such as the time

for fuel to initially leave the injector at the start of injection (SOI) depending on

how the sac is initialized. For the current work, the initial mesh at 10 microns of lift

was initialized as usual and then simulated with a static-needle until a quasi-steady

state was observed. The sealing algorithm was then manually triggered, simulating

an end of injection (EOI) scenario. This is not a perfect representation of a full
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Figure 6.6: Downstream mesh refinement for the SnappyHexMesh grids.

injection event, as the needle is never raised to its proper lift, but it is nevertheless

more realistic than assigning an arbitrary ramp to the pressure and fuel mass fraction

fields. Figure 6.7 displays the fuel mass fraction initial condition for both simulations.

A significant and asymmetric liquid fuel dribble is present for the G condition, while

the G2 condition has a pool of fuel downstream of the injector. However, the G2

condition contains purely vapor downstream of the needle seat, suggesting that the

entire sac has boiled off as shown in Figure 6.8.

Table 6.3: Operating condition summary.

Property G ANL-G G2 ANL-G2
Injection Pressure 20 MPa 19 MPa 20 MPa 20.11 MPa
Back Pressure 600 kPa 350 kPa 50 kPa 50 kPa
Fuel Iso-Octane Viscor Iso-Octane Iso-Octane
Ambient Gas Nitrogen Nitrogen Nitrogen Nitrogen
Fuel Temperature 90◦C 25◦C 91.1◦C 90◦C
Ambient Temperature 300◦C 20◦C 60◦C 60◦C
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Figure 6.7: Initial fuel mass fraction conditions.

6.3 Results

With initial conditions established, the full injection event including EOI and SOI

was simulated. The sealing algorithm was released at 0.1 microns above the 10 micron

initial lift, and was reapplied at 0.5 microns above the 10 micron final lift for stability.

First, results are presented in terms of projected mass and density as before. However,

as the entire injection duration was simulated, the results were time-averaged over

the quasi-steady portion of injection and compared against time-averaged radiography

results generated from the same experiment used during the U-RANS/LES compari-

son study [33]. First, Figure 6.9 presents the average projected mass. Compared to

the previous simulations, the two most prominent changes are the large increase in

inter-plume interaction and the increased over-prediction in density for the ANL-G

condition. Some of this is likely attributable to the change from Gamma differencing

in the U-RANS/LES study to the Minmod TVD scheme for the advective terms.
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Figure 6.8: Initial vapor volume fraction conditions, ANL-G2 conditions.

This was done to enhance stability, but the method appears to perform quite poorly

in terms of accuracy. This was exacerbated by the generally coarse cell sizing used to

offset the cost of the large increase in plenum size. In addition, the boundary layer

cell generation process was disabled for the SnappyHexMesh grids, likely reducing the

accuracy of the velocity profiles inside the nozzles. Nevertheless, the results for the

ANL-G condition essentially comprise a partial spray collapse, which is clearly not

reflected in the experimental measurements.

Next, the instantaneous projected mass at 407µs after SOI is presented in Figure

6.10 and compared against the prediction from the U-RANS/LES study. While the

inaccuracies previously mentioned are still present, the improved initial condition and

larger domain size have eliminated the under-prediction in plume penetration. The

rate of injection was not compared to the previous studies, as the results were not

physical. For example, negative mass flow rates were reported for several holes for

certain meshes, despite the expected fuel flow profile being present. The current rate
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Figure 6.9: Comparison of the simulated and experimentally observed projected mass.
Results are time-averaged over the quasi-steady portion of injection.

of injection post-processing method tracks the mass flux through faces in a user-

tagged cell set in the nozzle holes. This is attractive, as the user simply tags the

cells and the solver handles the rest at run-time. However, this requires a “flip map”

calculation, in which Foam-Extend determines which face normals to flip to yield

the desired result, in this case the flux out of the hole. If some face normals point

outward and are erroneously flipped, for example, the result would be incorrect. The

chances of this occuring are greatly increased due to the complicated and inconsistent

cell arrangements necessitated by the X-Ray scanned geometry. As such, this post-

processing method is not recommended for use in the future, and a method based on

user-defined cut-planes with a known orientation should be developed.
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(b) Previous result (c) Current result

Figure 6.10: Projected mass comparison at t = 407µs.

The time-averaged density at 2mm downstream from the injector tip is now pre-

sented in Figure 6.11. Once again, the ANL-G simulation predicts significant levels

of fuel between the plumes which is not reflected by the radiography data. The

plumes aligned with the cardinal directions of the mesh (the North, South, East, and

West plumes from this perspective) penetrate further outward and are shaped differ-

ently than the non-aligned plumes. This provides further evidence that the Minmod

scheme is not performing particularly well in terms of accuracy, likely contributing to

the partial spray collapse prediction in combination with the coarse cell sizing. Coinci-

dentally, the simulated flashing result matches the non-flashing experiment relatively
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well. This is peculiar, as the flashing condition should produce a higher likelihood of

spray collapse [117]. In this case, while the area between the plumes is indeed mostly

fuel (see Figure 6.9), it is mostly comprised of vapor. The liquid plumes therefore are

not interacting, and a partial collapse is not predicted for the flashing condition. As

mentioned previously, the Cerium additive in the fuel used in the ANL-G experiment

was assumed to remain isotropic as the fuel vaporizes. For this reason, the current

simulated density results contain both the liquid and vapor phases of the fuel. This

likely has little impact on the disparity between the ANL-G experiment and simula-

tion, as most vapor generated by cavitation in the nozzle has long since condensed.

It will be important to make more careful distinctions when comparing the ANL-G2

simulation to the upcoming matching experiment, but such changes are dependent

on currently unavailable experimental details.

The turbulent vortices observed in the U-RANS/LES study were also examined

as shown in Figure 6.12. The vortices were visualized by generating a 14 MPa total

pressure isosurface part way through the quasi-steady phase of the ANL-G simulation.

The nozzle surface is included for reference, and the isosurface is colored by the

turbulent kinetic energy to stress the turbulent nature of such structures. The three

vortices in the two holes toward the bottom of the image were found to remain quite

steady throughout the simulation, as opposed to the relatively chaotic and transient

behaviors which Baldwin et al. observed [10]. The presence of steady vortices in

some holes suggests that, had the ROI results been more reliable, they likely would

have revealed significant variations in the per-hole mass flow rate. This highlights the

impact of using the highly asymmetric as-produced geometry.

Finally, the conditions at the end of injection are examined. Figures 6.13 and 6.14

display the fuel mass fraction and density conditions for the ANL-G and ANL-G2

simulations, respectively. These largely resemble the initial conditions, which suggests

that the estimation technique discussed previously produced reasonably good results.
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Figure 6.11: Time-averaged density contour comparison at z=2mm downstream of
the injector tip.

This also highlights the importance of the initial condition as a link between injection

cycles, as it is both a direct result of end of injection physics and a direct cause of

the start-up behavior of the next injection event. The ANL-G condition displays

significant tip wetting and liquid fuel dribble. The sac is no longer purely fuel, as

downstream gas is entrained. The ANL-G2 condition does not entrain any NCG into

the sac, but the fuel mass fraction profile is quite similar to that of the sub-cooled

condition. The density field, however, shows that the fuel has completely boiled away

downstream of the needle seat, meaning tip-wetting and fuel dribble concerns are

negligible.

74



www.manaraa.com

Figure 6.12: Visualization of vortices in the sac during the ANL-G simulation.

Overall, the simulation workflow shows promise, despite the poor agreement with

the experiments. Two full duration injection events were successfully simulated on

intricate X-Ray scanned geometries, including the start and end of injection. Scripts

were created for meshing, case initialization, and mapping between meshes, paving

the way for high simulation throughput in the future. The flexibility and scaling

performance of the displacementLaplacian mesh motion library enabled computation

of both solutions in less than a week, whereas the previous tetFEM based workflow

would likely have taken several weeks to a month for meshes of this size (if convergence

was achieved at all). A new strategy for estimating initial conditions was developed,

which, when combined with an increased plenum size, eliminated errors in the pen-

etration speed of the plumes at SOI that were seen in previous sections. Finally,

switching to Gamma differencing and increasing the overall mesh resolution should

improve accuracy in the future, as will employing the higher resolution geometry

currently being produced at ANL.
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Figure 6.13: End of injection results, ANL-G condition. Fuel mass fraction (left) and
density contours (right).

Figure 6.14: End of injection results, ANL-G2 condition. Fuel mass fraction (left)
and density contours (right).
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CHAPTER 7

SUMMARY

The purpose of this thesis was to expand upon the limited literature on diffuse

interface Eulerian CFD simulations of impinging jet and GDI sprays, as well as to

improve the industrial relevance and viability of such techniques as a whole. The

main contributions to these goals are as follows:

1. Accurate prediction of the liquid mass distribution in a like-doublet impinging

jet injector.

2. Comparisons between U-RANS and LES simulations of a gasoline direct injec-

tion nozzle, showing that U-RANS is adequate in many cases.

3. Testing of a more thorough diffusion flux closure for the current turbulent mix-

ing model. The simple model was shown to be superior, suggesting that there

is still room for the development of an improved closure.

4. Thorough code performance analysis, highlighting the performance benefits of

changing to a simpler mesh motion technique and demonstrating super-linear

scalability in many cases.

5. Proof of concept of a workflow to incorporate “as-manufactured” X-Ray scanned

injector geometries into full-duration, moving-needle flashing and sub-cooled

simulations that were previously infeasible.

Numerous opportunities for further improvement of the models and workflows were

suggested. In particular, improving the near-field density predictions in the GDI
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simulations is important, as this was the biggest disparity between simulated results

and experimental observations throughout the current work. Developing new diffu-

sion flux closures, using more accurate numerical schemes, and utilizing adequately

resolved meshes would all contribute to such improvements. Automation of the align-

ment and stiching of “as-designed” and “as-manufactured” geometries would also be

beneficial, as this is currently time consuming and presents a high potential for errors.

Finally, higher resolution X-Ray geometries can be used in the future. Taken as a

whole, these improvements yield a variety of new publication opportunities, improve

the usability of the current solvers, and may increase interest in industrial adoption

of Eulerian fuel spray simulation techniques.
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